Chase Joyner

882 Homework 4

November 30, 2016

Problem 1:

1) Consider a generalized linear model framework, where the response variables Y_{i} have distribution within the exponential family, i.e.

$$
f\left(y_{i} \mid \theta_{i}\right)=\exp \left\{\frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{\phi}+c\left(y_{i}, \phi\right)\right\}
$$

where the scale parameter ϕ is assumed to be known and θ_{i} is some function of the regressors and their coefficients which is specified by the data model and the link function. Denote the true mean of the responses as $\mu_{i}=E\left[y_{i} \mid \theta_{i}\right]$. The link function g relates the covariates to the mean by

$$
g\left(\mu_{i}\right)=\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}
$$

where \mathbf{X}_{i}^{\prime} denotes a p-dimensional vector of covariates for the i th observation. In order perform model fitting, we complete the model specification by placing a normal prior distribution on the regression coefficients $\boldsymbol{\beta}$, i.e. apriori

$$
\boldsymbol{\beta} \sim N(\mathbf{a}, \mathbf{R}) .
$$

By specifying the prior and likelihood in this fashion, the posterior distribution is

$$
f(\boldsymbol{\beta} \mid \mathbf{Y}, \mathbf{X}) \propto \exp \left\{-\frac{1}{2}(\boldsymbol{\beta}-\mathbf{a})^{\prime} \mathbf{R}^{-1}(\boldsymbol{\beta}-\mathbf{a})+\sum_{i=1}^{n} \frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{\phi}\right\} .
$$

The idea is to approximate this posterior distribution with a normal distribution that will be used for the proposal distribution. To achieve this, a second order Taylor expansion of the likelihood term

$$
\ell(\boldsymbol{\beta})=\sum_{i=1}^{n} \frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{\phi}
$$

is carried out around some value of $\boldsymbol{\beta}$, say $\boldsymbol{\beta}^{(t-1)}$, in order to combine with the prior term. The result is a normal distribution with mean vector

$$
\mathbf{m}^{(t)}=\left(\mathbf{R}^{-1}+\frac{1}{\phi} \mathbf{X}^{\prime} \mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right) \mathbf{X}\right)^{-1} \times\left(\mathbf{R}^{-1} \mathbf{a}+\frac{1}{\phi} \mathbf{X}^{\prime} \mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right) \widetilde{\mathbf{y}}\left(\boldsymbol{\beta}^{(t-1)}\right)\right)
$$

and covariance matrix

$$
\mathbf{C}^{(t)}=\left(\mathbf{R}^{-1}+\frac{1}{\phi} \mathbf{X}^{\prime} \mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right) \mathbf{X}\right)^{-1}
$$

where $\mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right)$ is a diagonal weight matrix with entries

$$
W_{i i}\left(\boldsymbol{\beta}^{(t-1)}\right)=\frac{1}{b^{\prime \prime}\left(\theta_{i}\right) g^{\prime}\left(\mu_{i}\right)^{2}}
$$

and $\widetilde{\mathbf{y}}\left(\boldsymbol{\beta}^{(t-1)}\right)$ is a vector transformed observations with entries

$$
\widetilde{y}_{i}\left(\boldsymbol{\beta}^{(t-1)}\right)=\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+\left(y_{i}-\mu_{i}\right) g^{\prime}\left(\mu_{i}\right)
$$

Then, $J_{\boldsymbol{\beta}^{(t)}}=N\left(\mathbf{m}^{(t)}, \mathbf{C}^{(t)}\right)$ approximates the true posterior distribution and thus leads to high acceptance ratios in a metropolis-hastings algorithm. This method is summarized as follows:

1. Initialize $\boldsymbol{\beta}^{(0)}$ and set $t=1$;
2. Propose $\boldsymbol{\beta}^{\star}$ from $J_{\boldsymbol{\beta}^{(t)}}$ and accept it with probability $p=\min \{r, 1\}$, where

$$
r=\frac{f\left(\boldsymbol{\beta}^{\star} \mid \mathbf{Y}, \mathbf{X}\right)}{f\left(\boldsymbol{\beta}^{(t)} \mid \mathbf{Y}, \mathbf{X}\right)} \frac{J_{\boldsymbol{\beta}^{\star}}\left(\boldsymbol{\beta}^{(t)}\right)}{J_{\boldsymbol{\beta}^{(t)}}\left(\boldsymbol{\beta}^{\star}\right)}
$$

3. Increment t and return to step 2 .

The construction of the proposal parameters $\mathbf{m}^{(t)}$ and $\mathbf{C}^{(t)}$ approximates the posterior mode and covariance matrix for $\boldsymbol{\beta}$. Now, we describe this approach under a logistic regression model.
2) Consider the following logistic data model

$$
\begin{aligned}
y_{i} & \sim \operatorname{Bin}\left(\pi_{i}, 1\right) \\
\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right) & =\beta_{0}+\beta_{1} x_{i}
\end{aligned}
$$

First, the distribution of the observed data is a member of the exponential family since

$$
\begin{aligned}
f\left(y_{i} \mid \pi_{i}\right) & =\pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}}=\left(\frac{\pi}{1-\pi_{i}}\right)^{y_{i}}\left(1-\pi_{i}\right) \\
& =\exp \left\{y_{i} \log \frac{\pi_{i}}{1-\pi_{i}}+\log \left(1-\pi_{i}\right)\right\}
\end{aligned}
$$

Therefore, we see that $\theta_{i}=\log \frac{\pi_{i}}{1-\pi_{i}}, b\left(\theta_{i}\right)=\log \left(1+e^{\theta_{i}}\right)$, and $\phi=1$. For notational ease,

$$
\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}\right)^{\prime}, \quad \mathbf{Y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \quad \text { and } \quad \mathbf{X}=\left(\mathbf{1}_{n},\left(x_{1}, \ldots, x_{n}\right)^{\prime}\right)
$$

Placing a normal prior distribution on $\boldsymbol{\beta}$, the posterior distribution is
$f(\boldsymbol{\beta} \mid \mathbf{Y}, \mathbf{X}) \propto \prod_{i=1}^{n} f\left(y_{i} \mid \pi_{i}\right) f(\boldsymbol{\beta}) \propto \exp \left\{-\frac{1}{2}(\boldsymbol{\beta}-\mathbf{a})^{\prime} \mathbf{R}^{-1}(\boldsymbol{\beta}-\mathbf{a})+\sum_{i=1}^{n} y_{i} \log \frac{\pi_{i}}{1-\pi_{i}}+\sum_{i=1}^{n} \log \left(1-\pi_{i}\right)\right\}$,
where π_{i} is obtained by inverting the link function, i.e.

$$
\pi_{i}=\frac{\exp \left\{\beta_{0}+\beta_{1} x_{i}\right\}}{1+\exp \left\{\beta_{0}+\beta_{1} x_{i}\right\}}
$$

Now we compute the necessary components for the proposal distribution, namely

$$
\begin{aligned}
b^{\prime \prime}\left(\theta_{i}\right) & =\frac{e^{\theta_{i}}}{\left(1+e^{\theta_{i}}\right)^{2}} \\
g^{\prime}\left(\mu_{i}\right) & =\frac{1}{\pi_{i}\left(1-\pi_{i}\right)} \quad \text { since } \mu_{i}=\pi_{i} .
\end{aligned}
$$

It now follows that the diagonal weight matrix $\mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right)$ has entries

$$
W_{i i}\left(\boldsymbol{\beta}^{(t-1)}\right)=\pi_{i}\left(1-\pi_{i}\right)
$$

and the transformed observations take the form

$$
\widetilde{y}_{i}\left(\boldsymbol{\beta}^{(t-1)}\right)=\beta_{0}+\beta_{1} x_{i}+\frac{y_{i}-\pi_{i}}{\pi_{i}\left(1-\pi_{i}\right)} .
$$

Finally, the proposal distribution in the metropolis-hastings algorithm is $N\left(\mathbf{m}^{(t)}, \mathbf{C}^{(t)}\right)$, where

$$
\begin{aligned}
& \mathbf{m}^{(t)}=\mathbf{C}^{(t)} \times\left(\mathbf{R}^{-1} \mathbf{a}+\mathbf{X}^{\prime} \mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right) \widetilde{\mathbf{y}}\left(\boldsymbol{\beta}^{(t-1)}\right)\right) \\
& \mathbf{C}^{(t)}=\left(\mathbf{R}^{-1}+\mathbf{X}^{\prime} \mathbf{W}\left(\boldsymbol{\beta}^{(t-1)}\right) \mathbf{X}\right)^{-1}
\end{aligned}
$$

Now the full algorithm summarized in part 1 of this problem can be implemented.
3) The code can be found in the appendix.
4) The estimates from both algorithms can be found below:

Parameter	BIWLS	Regular MH
β_{0}	-4.055	-4.031
β_{1}	0.100	0.099

Therefore, both algorithms seem to approximate the parameters in a similar fashion. We will analyze these two approaches further. Firstly, the autocorrelation using a regular MH
algorithm is:

which is the autocorrelation plot for β_{0} and β_{1}, respectively. The autocorrelation plot using the BIWLS algorithm is

for β_{0} and β_{1}, respectively. The autocorrelation for the BIWLS is far less, and this was even without any thinning. Lastly, the effective sample size for β_{0} was 7270 out of 10000 samples and for β_{1} was 7898 out of 10000 samples with the BIWLS. Comparatively, the effective sample size was 311 for β_{0} and 305 for β_{1} out of 1000 samples, which also is not as good as the BIWLS method. The last note worthy thing to mention is the acceptance rate for (β_{0}, β_{1}) was about 95% while the acceptance rate for β_{0} and β_{1} under the regular MH algorithm was about 24% each.

Problem 2:

1) The idea of a conditional means prior (CMP) is with p predictors, i.e. p parameters, we include our prior information to construct an informative prior distribution to be used in a generalized linear model framework. This is typical tough to do in GLMs. In a GLM, we have

$$
m_{i}:=E\left[Y_{i} \mid \mathbf{X}_{i}\right]=g^{-1}\left(\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}\right)
$$

where g is a specified link function that relates the covariates to the mean response. The informative prior for $\boldsymbol{\beta}$ is induced by a CMP on the new mean vector $\widetilde{\mathbf{m}}=\left(\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right)$, where

$$
\widetilde{m}_{i}=E\left[\widetilde{Y}_{i} \mid \widetilde{\mathbf{X}}_{i}\right]
$$

where \widetilde{Y}_{i} is some observable response at covariate $\widetilde{\mathbf{X}}_{i}$, where the selected p covariate vectors $\widetilde{\mathbf{X}}_{i}$ are linearly independent. Now, for each new mean \widetilde{m}_{i}, elicit the independent prior $\pi\left(\widetilde{m}_{i}\right)$. Then, the CMP is given by

$$
\pi(\widetilde{\mathbf{m}})=\prod_{i=1}^{p} \pi\left(\widetilde{m}_{i}\right)
$$

Define $\mathbf{G}(\widetilde{\mathbf{m}})$ that applies g to each element, i.e. entries $g\left(\widetilde{m}_{i}\right)$. The link function gives the relationship $\boldsymbol{\beta}=\widetilde{\mathbf{X}}^{-1} \mathbf{G}(\widetilde{\mathbf{m}})$, and so through a transformation the induced prior is

$$
\begin{aligned}
\pi(\boldsymbol{\beta}) & \propto \prod_{i=1}^{p} \pi\left(\widetilde{m}_{i}\right) / g^{\prime}\left(\widetilde{m}_{i}\right) \\
& \propto \prod_{i=1}^{p} \pi\left(g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right) / g^{\prime}\left(g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right)
\end{aligned}
$$

2) Now we outline the details to develop the CMP for a logistic regression model. Consider the model of the form

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Bin}\left(m_{i}, 1\right) \\
g\left(m_{i}\right) & =\log \left(\frac{m_{i}}{1-m_{i}}\right)=\mathbf{X}_{i} \boldsymbol{\beta}
\end{aligned}
$$

where

$$
m_{i}=E\left[Y_{i} \mid \mathbf{X}_{i}\right]=g^{-1}\left(\mathbf{X}_{i} \boldsymbol{\beta}\right)=\frac{\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}}{1+\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}}
$$

which is a logistic regression model. Notice that

$$
g^{\prime}\left(m_{i}\right)=m_{i}^{-1}\left(1-m_{i}\right)^{-1} \quad \Longrightarrow \quad g^{\prime}\left(g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right)=\frac{\left(1+\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}\right)^{2}}{\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}}
$$

Then, once specifying the independent priors $\pi\left(\widetilde{m}_{i}\right)$, the induced prior is

$$
\pi(\boldsymbol{\beta}) \propto \prod_{i=1}^{p} \pi\left(g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right) \frac{\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}}{\left(1+\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}\right)^{2}}
$$

In logistic regression, a reasonable choice for the independent priors are

$$
\widetilde{m}_{i} \sim \operatorname{Beta}\left(a_{i}, b_{i}\right)
$$

and therefore the induced prior for the regression coefficients is

$$
\begin{aligned}
\pi(\boldsymbol{\beta}) & \propto \prod_{i=1}^{p}\left(g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right)^{a_{i}-1}\left(1-g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right)^{b_{i}-1} \frac{\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}}{\left(1+\exp \left\{\mathbf{X}_{i} \boldsymbol{\beta}\right\}\right)^{2}} \\
& \propto \prod_{i=1}^{p}\left(g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right)^{a_{i}}\left(1-g^{-1}\left(\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}\right)\right)^{b_{i}}
\end{aligned}
$$

3) Now we develop a sampling strategy to draw posterior samples for $\boldsymbol{\beta}$ under the CMP prior using the technique discussed in problem 1. Consider a binomial data model of the form

$$
\begin{aligned}
\widetilde{Y}_{i} & \sim \operatorname{Bin}\left(n_{i}, p_{i}\right) \\
\log \left(\frac{p_{i}}{1-p_{i}}\right) & =\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}
\end{aligned}
$$

The likelihood function for a single observation in this situation is given by

$$
f\left(\widetilde{Y}_{i} \mid \widetilde{\mathbf{X}}_{i}\right) \propto p_{i}^{Y_{i}}\left(1-p_{i}\right)^{n_{i}-Y_{i}} .
$$

Comparing this function to the induced prior in part 2), we define the parameters in the following way:

$$
a_{i}=\widetilde{Y}_{i} \quad \text { and } \quad b_{i}=n_{i}-\widetilde{Y}_{i} .
$$

Now, for sampling, we implement the method discussed in problem 1. Combine variables as

$$
\begin{aligned}
& \mathbf{Y}^{\star}=\left(\mathbf{Y}, \widetilde{Y}_{1}, \ldots, \widetilde{Y}_{p}\right)^{\prime} \\
& \mathbf{X}^{\star}=\left(\mathbf{X}, \widetilde{\mathbf{X}}_{1}, \ldots, \widetilde{\mathbf{X}}_{p}\right)^{\prime}
\end{aligned}
$$

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ defined in part 2). Then, using the derivations from problem 1,

$$
\begin{aligned}
\mathbf{C} & =\left(\mathbf{X}^{\star T} \mathbf{W}(\boldsymbol{\beta}) \mathbf{X}^{\star}\right)^{-1} \\
\mathbf{m} & =\mathbf{C} \times\left(\mathbf{X}^{\star T} \mathbf{W}(\boldsymbol{\beta}) \overline{\mathbf{Y}}^{\star}(\boldsymbol{\beta})\right)
\end{aligned}
$$

where $\overline{\mathbf{Y}}^{\star}(\boldsymbol{\beta})$ is a vector of transformed observations, i.e. transformation of \mathbf{Y}^{\star}, with entries

$$
\begin{aligned}
& \bar{Y}_{j}^{\star}(\boldsymbol{\beta})=\mathbf{X}_{j} \boldsymbol{\beta}+\frac{Y_{j}-m_{j}}{m_{j}\left(1-m_{j}\right)} \quad \text { for } j=1, \ldots, n \\
& \bar{Y}_{i}^{\star}(\boldsymbol{\beta})=\widetilde{\mathbf{X}}_{i} \boldsymbol{\beta}+\frac{\widetilde{Y}_{i}-n_{i} p_{i}}{n_{i} p_{i}\left(1-p_{i}\right)} \quad \text { for } i=1, \ldots, p
\end{aligned}
$$

and $\mathbf{W}(\boldsymbol{\beta})$ is the diagonal weight matrix with entries

$$
W_{i i}(\boldsymbol{\beta})=n_{i} p_{i}\left(1-p_{i}\right)
$$

Then, we use the algorithm discussed in problem 1.

Problem 3:

Here we develop a metropolis algorithm to sample the ρ term in the CAR model from problem 2 of homework 3. Namely, consider the spatial regression model given by

$$
Y_{i}=\beta_{0}+b_{i}+\epsilon_{i},
$$

where $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$ for $i=1, \ldots, n$. We assume that the spatial random effects follow the $\operatorname{CAR}\left(\sigma^{2} \tau^{2}, \rho\right)$ model, i.e.

$$
\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \tau^{2}(\mathbf{D}-\rho \mathbf{W}) .\right.
$$

It can be shown that ρ must be between -1 and 1 , and as a result we will assume $\rho \sim \operatorname{Unif}(-1,1)$. Then, the posterior distribution for ρ is simply

$$
\pi\left(\rho \mid \mathbf{b}, \sigma^{2}, \tau^{2}\right) \propto \exp \left\{-\frac{1}{2 \sigma^{2} \tau^{2}} \mathbf{b}^{\prime}(\mathbf{D}-\rho \mathbf{W}) \mathbf{b}\right\}
$$

Now, for the proposal distribution, we will consider a symmetric random walk, namely

$$
J\left(\rho \mid \rho^{(t)}\right)=\operatorname{Unif}\left(\rho^{(t)}-c, \rho^{(t)}+c\right)
$$

where c is a tuning parameter to achieve an acceptance probability of roughly 35%. Denote $\boldsymbol{\theta}_{-\rho}$ as the set of parameters to update, excluding ρ. Then, the algorithm is as follows:

1. Initialize $\boldsymbol{\theta}^{(0)}$ and set $t=1$.
2. Update $\boldsymbol{\theta}_{-\rho}^{(t)}$ via the Gibbs sampling scheme of problem 2 of homework 3.
3. Propose ρ^{\star} from $J\left(\rho \mid \rho^{(t)}\right)$ and accept it with probability $p=\min \{r, 1\}$, where

$$
r=\frac{\pi\left(\rho^{\star} \mid \mathbf{b}, \sigma^{2}, \tau^{2}\right)}{\pi\left(\rho^{(t)} \mid \mathbf{b}, \sigma^{2}, \tau^{2}\right)}
$$

APPENDIX

```
########################################
##########################################
######
##### Chase Joyner
##### 882 Homework 4
######
#########################################
##########################################
## Required libraries ##
library (MASS)
library(mvtnorm)
library(coda)
############################################
##### Problem 1
BIWLS = function(Y, X, iter = 1e4){
    ## Preliminaries ##
    n = length(Y)
    p = dim(X)[2]
    R=100*diag(p)
    a = rep(1, p)
    ## Initial values ##
    beta = rep (0, p)
    acc}=
    ## Save records ##
    Beta = matrix(-99, nrow = iter, ncol = p)
    ## Compute only once ##
    IR = solve(R)
    IRa = IR %*% a
    ## Link function for pi ##
    link = function(u){
        expXB = exp(X %*% u)
        val = expXB / (1 + expXB)
        return(val)
    }
    llik = function(s){
```

```
    pi = link(s)
    val = -(1/2)*t(s-a)%*%IR%*%(s-a) + sum(Y*log(pi/(1-pi))) + sum(log
    return(val)
    }
    for(i in 1:iter){
            ## Update beta ##
            pi.t = as.vector(link(beta))
            newY.t = X %*% beta + (Y - pi.t) / (pi.t * (1 - pi.t))
            Wt = diag(pi.t * (1- pi.t))
            Ct = solve(IR + t(X) %*% Wt %*% X)
            mt = Ct %*% (IRa + t(X) %*% Wt %*% newY.t)
            beta.s = as.vector(rmvnorm(1, mt, Ct))
            pi.s = as.vector(link(beta.s))
            newY.s = X %*% beta.s + (Y - pi.s) / (pi.s * (1 - pi.s))
            Ws = diag(pi.s * (1 - pi.s))
            Cs = solve(IR + t(X) %*% Ws %**% X)
            ms = Cs %*% (IRa + t(X) %*% Ws %**% newY.s)
            r = exp(llik(beta.s) - llik(beta) + dmvnorm(beta, ms, Cs, log = TRI
            z = rbinom(1, 1, min(r, 1))
            if (z=1){
                beta = beta.s
                acc = acc + 1
    }
            Beta[i,] = beta
            print(c(i))
    }
    return(list(Beta = Beta, accept = acc / iter))
}
## Generate some data and run ##
#par(mfrow = c(2,1))
#n = 1000
#beta.true = c(-1, 0.5)
#X = cbind(rep (1, n), rnorm(n, 2, 1))
#probs = exp(X %*% beta.true) / (1 + exp(X %*% beta.true))
#Y = rbinom(n, 1, probs)
#res = BIWLS(Y, X)
#apply(res$Beta, 1, mean)
## Analyze diabetes data ##
library (MASS)
data(Pima.tr)
data(Pima.te)
pima = rbind(Pima.tr, Pima.te)
```

```
Y = as.vector(pima[, 8])
Y[Y = "Yes"] = 1
Y[Y == 'No'] = 0
Y = as.numeric(Y)
X = cbind(1, as.matrix (pima [, 5]))
res = BIWLS(Y, X)
apply(res$Beta, 2, mean)
Beta.mcmc1 = as.mcmc(res$Beta[1,])
Beta.mcmc2 = as.mcmc(res$Beta[2,])
autocorr.plot(Beta.mcmc1)
autocorr.plot(Beta.mcmc2)
effectiveSize(Beta.mcmc1)
effectiveSize(Beta.mcmc2)
```

